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This paper presents a numerical method to propagate relative orbits. It can handle an arbitrary number of zonal
and tesseral terms in the geopotential. This method relies on defining a relative Hamiltonian, which describes both the
absolute and the relative motion of two satellites. The solution is separated into an analytical Keplerian part and a
symplectic numerical integration part. The algorithm is designed to conserve the constants of the motion, resulting in
better long-term accuracy. We present results for a broad range of scenarios with large separations and show that
submeter accuracy is possible over five days of propagation, with a geopotential model containing 36 terms in tesseral
and zonal harmonics. These results are valid for eccentricities reaching 0.5. Furthermore, the relative propagation
scheme is significantly faster than differencing two absolute orbit propagations.

I. Introduction

ODELING the relative motion between two satellites requires

computing the orbital motion of each and differencing them.
Analytic models provide greater insight into the variation of relative
positioning, but they rapidly become very complex as they
incorporate various effects, all of which are of equal importance. The
approach we propose here is to use a numerical integration of explicit
relative motion equations. Such an approach allows a wide range of
perturbing effects to be included. We will first review the
development of analytic models before considering numerical
approaches to this problem.

Analytic models of relative motion usually start from Clohessy—
Wiltshire (CW) [1] or Hill equations [2], which are the linearized
Keplerian relative motion equations for near-circular orbits. This
model has been employed successfully for a short-term rendezvous
type of mission.

Various methods have been proposed to extend this near-circular
Keplerian solution to include the effects of J, [3—8], eccentricity [9—
13], and atmospheric drag [14]. There have also been some attempts
to incorporate higher-order potential terms into the solution, but with
eccentricity limitations [15-18]. Karlgaard and Lutze [19] derived
second-order solutions to the Keplerian relative motion equations for
use with formation flying of satellites on circular orbits.

Most of these analytic models all use a local rotating coordinate
frame. Although this approach makes the analysis of the unperturbed
motion very straightforward, the addition of perturbation terms in the
force calculation are made significantly more complex. For this
reason, models incorporating the effects of J, rapidly become quite
unwieldy. Recently, Melton [20] and Alfriend and Han [21]
published evaluations of different approaches for the analytical
modeling of the relative motion, the latter via an error index that they
define. They show that, not surprisingly, J,-inclusive nonlinear
models provide much better long-term accuracy than their
Keplerian-only counterparts and CW equations have difficulty
handling even very small (1073 level) eccentricities. This underlines
the importance of employing better models of the gravitational
potential.

Our previous work [22] focused upon a simple linearized
analytical expression for the Keplerian relative motion without
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restriction to orbital eccentricity. The approach was different from
other approaches in that our starting point was not the near-circular
case and no rotating frame was employed. The method was based
upon the derivation of a relative Hamiltonian that preserved strictly
conserved quantities in the full Keplerian problem: the differences in
orbital energy and orbital angular momenta. We demonstrated how
to set initial conditions to accurately reflect these conserved
quantities and thus obtain a much higher degree of accuracy in the
description of relative motion over extended time scales. Even when
J, is included, the relative motion should conserve relative energy
and the z component of the angular-momentum difference.

The literature on numerical relative orbit propagation, on the other
hand, is virtually nonexistent. One interesting exception is Encke’s
method (as cited by Bate et al. [23]), which is originally used for the
numerical integration of perturbed orbits, in which the perturbations
to the Keplerian orbit are integrated numerically.

Navigation in space is carried out via combining measurements
from sensors with a mathematical model of the motion, within a filter
to smooth out the data. High-precision relative navigation sensors
[e.g., carrier-difference global positioning system (CDGPS) or laser]
usually require large amounts of power and/or computational
resources. For example, Busse et al. [24] (see also Inalhan et al. [25])
recently published a complete relative navigation solution via an
adaptive extended Kalman filter. They use a simple linear Keplerian
dynamic model, and this needs to be supplemented with accurate
CDGPS sensor data at a rate of 1 Hz, which means that GPS has to be
kept on all the time. On the other hand, it is desirable to turn these
systems on as infrequently as possible, particularly in view of the fact
that one of the aims of formation flying is to distribute the workload
and make the individual satellites smaller with limited resources.
There is, therefore, an advantage in employing a more accurate
mathematical model of the motion, because this requires fewer
samples to be made with the sensor.

This paper describes the derivation of a novel symplectic
numerical, relative orbit-propagation algorithm that can accom-
modate not only the primary Earth oblateness term J,, but also an
arbitrary number of higher-order geopotential terms. The method is
designed to strictly conserve all quantities invariant to the motion and
is fast, for working within a Kalman style filter. Other perturbation
terms, such as atmospheric drag, can be easily incorporated (such as
by extending the method by Malhotra [26]), although these will not
be described here.

II. Modeling of the Motion

The motion of a satellite orbiting a planet cannot be completely
described by a Keplerian orbit, particularly if at a low altitude. The
analytic solution of Keplerian motion is a useful approximation, but
will produce positional errors on the order of a few kilometers in the
case of an Earth-orbiting satellite. When considering the motion of
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multiple satellites in close proximity, such errors are unacceptably
large (at least as large as, if not larger than, their separations). As a
consequence, a more accurate orbit model is required for the motions
of these satellites, and this means that a numerical solution to the
equations of motion can be extremely useful.

Numerical solutions to satellite motion can be made significantly
more accurate than the analytic models by incorporating higher
numbers of terms in the gravitational potential, expressed as an
infinite series of spherical harmonics. To propagate the orbit of a
satellite, usually around 40 zonal terms for the Earth are employed,
because this provides an adequate description to typical machine
accuracy [27].

A number of accurate numerical schemes have been devised to
propagate satellite trajectories. Montenbruck [28] describes many of
them, such as the Runge—Kutta methods, multistep methods (e.g.,
Stoermer—Cowell and Adams-Bashforth) and extrapolation
methods (Bulirsch—Stoer); see also Palmer et al. [29] for a
comparison of different methods.

Recent advances in this field have seen the introduction of
symplectic methods [30-35]. These methods are geometric
integrators, which means that they preserve, to high precision, the
constants associated with the motion. In the case of satellite orbits,
this means that the orbital energy and components of angular
momentum are strictly conserved, as dictated by the real dynamics of
the problem. These geometric properties stem from the Hamiltonian
description of the motion and its consequent area-preserving quality
in phase space. The advantage of exploiting these symplectic
properties is that the integrators are much faster for the same level of
accuracy than their nongeometric counterparts such as Bulirsch—
Stoer. This is because by preserving the geometry and employing
more efficient integration of forces of different magnitudes, larger
time steps may be used than with those of the other methods.

When using such numerically propagated solutions for formation
flying, however, we need to know the relative positions and
velocities between satellites, and this means subtracting two almost
identical large values to measure a small difference. This greatly
magnifies the error in the description of the relative motions between
the satellites, particularly for onboard applications with limited
numerical precision. In addition, significant gains in computational
time can be had without large penalties in relative positioning error.
Therefore, we would like to be able to propagate the relative motion
directly. If we are to exploit the success of symplectic propagation
methods, then the description of relative motion needs to completely
preserve relative energy differences and angular-momentum
differences. We therefore seek a method of describing relative
motion in terms of a Hamiltonian system.

A. Description of Motion in Inertial Space

We start by considering the motion of a single satellite in inertial
space, orbiting around a planet. The motion of the satellite can be
described using the Hamiltonian:

m

H(r,v):K—l—R:%vz—?—i—R(r) (1)

where K = K(r, v) is the Hamiltonian describing Keplerian motion,
R is the perturbing function due to the remaining terms in the
spherical harmonic expansion of the gravitational field of the planet,
and p is the gravitational parameter (GM, where M is the mass of the
planet). We can write R explicitly as

N n
R n
R(r,p,0) = %Z Z (Tee) P (cos 0)[C,,, cos m@ + S,,,, sin mg]
0

n=2 m=|

2

where (r, ¢, ) are spherical polar coordinates fixed in the Earth,
measured from the rotation axis [27].

From this Hamiltonian, the equations of orbital motion can be
derived. The symplectic approach exploits the exact analytic solution
of the Keplerian motion and the fact that R is much smaller than K in

K » >
h/2 h/2

Fig. 1 Basic leapfrog algorithm.

magnitude. In the case of the Earth, R is about 10? times smaller. In
the leapfrog scheme, the propagation of satellite position and
velocity proceeds by first propagating the motion over half a time
step, ignoring the R term completely. This is followed by a
propagation ignoring K completely over a full time step. Because R
is independent of velocity, this causes a jump in velocity with no
change of position:

Av=—h B_R 3)
or

Then comes another half-time-step evolution ignoring R, using the
updated velocity [36]; this is shown in Fig. 1.

The reason this approach works so well is because at each step of
the procedure, the error has a Hamiltonian form. This causes the
energy to oscillate but it never diverges; therefore, even for
reasonably large time steps, the energy is conserved. As the time step
continues to increase, the system starts to become chaotic and the
stability of the method collapses [34].

As already shown, the Hamiltonian can be written as a sum of two
Hamiltonians, such as H = K + R. If the time step is &, then we can
express this procedure in a symbolic form using Lie operators [37].
The preceding leapfrog scheme is then

exp (%hK ) exp(hR) exp (%hK) 4)

The Lie operator H gives the time derivative of an arbitrary
function f(p, g, t) (with p and g being canonical variables), which is
moving under a Hamiltonian H (i.e., f = f[-} [37]). This can be used
to describe how this function moves forward in time, under the
motion defined by this Hamiltonian, with the notation
exp(hH)f(p.q.0) = f(p.q, h).

There is a direct relationship between symplectic methods and
conventional integration schemes that allows for higher-order
schemes to be developed [38]. Using this, we can derive higher-order
symplectic schemes that involve more force evaluations per step but
reduce the order of the error in terms of the time step. A balance can
be struck between increasing the time step using higher-order
schemes and the increasing overhead of more force evaluations per
step. We have found that it is best using a sixth-order scheme for the
largest components of the acceleration, whereas higher-order terms
in R may be evaluated using lower-order schemes. Section III.A
contains a more in-depth discussion of how these higher-order
schemes are constructed.

B. Hamiltonian Description of Keplerian Relative Motion

In this section, we shall consider the relative motion between two
satellites moving in a Keplerian potential, focusing on the conserved
quantities of the motion. Because a substantially more detailed
treatment was presented in our previous work [22], we will limit
ourselves to a brief summary here.

We start by considering a satellite at position r moving with
velocity v in a Keplerian potential. The Hamiltonian for this satellite
is given by

"

1
H=§(V'V)—7 (5)

where u is the gravitational parameter defining the potential. The
position and velocity of this satellite defines coordinates in a six-

dimensional phase space, and Hamilton’s equations define the
motion of the satellite through this phase space at all later times. Now
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suppose that instead of a single satellite there are two satellites in
close proximity to each other in this phase space. We can define the
position and velocity of these two satellites as r & §r and v %+ §v.
This description locates the midpoint in phase space as defined by r
and v and the deviation from this midpoint for each of the two
satellites. Consider the Hamiltonian that describes the motion of the
satellite for which the small increments in phase-space coordinates
are added to the midpoint coordinates:

1 1 Ir-ér

The Hamiltonian for the second satellite (H,) can be found from the
preceding by reversing the signs of ér and §v. According to the theory
of Hamiltonian systems, both of these quantities are conserved by the
motion. We would therefore like to find a description of the relative
motion that also conserves these quantities and exploits the fact that
the separations in phase space are small.

The relative energy is defined as the difference between the
following two Hamiltonians:

Hy=H, —Hy=v-6v+L (o) 7
-

The important point to note in this expression is that by our choice of
describing the motion in terms of the phase-space midpoint, the
second-order terms in Hy cancel. Hence, the relative energy is
accurate to third order. Furthermore, we will shortly exploit this
midpoint definition to greatly increase the accuracy of our relative
propagation scheme.

‘We can think of the relative motion of the two satellites as a motion
in a 12-dimensional phase space defined by the position and velocity
of the midpoint and the separation positions and velocities. In this
context, we may generalize the set of Hamilton’s equations to obtain
the following set in 12 dimensions:

. 0Hg _ O0HR _ I3

T YT T AT ®
. 0Hp _ 0Hy 3u
or = v =, =5 or + ;s (r-do)r (9)

These equations are an extension of the Hamilton’s equations in six
dimensions, but there is a cross-coupling between the relative motion
and absolute motion of the midpoint. The acceleration in Eq. (8)
shows that the motion of the midpoint reduces to Keplerian motion.
Equation (9), on the other hand, describes the relative motion.

Similarly, writing the angular momentum for two satellites and
taking the difference, one can obtain the relative angular momentum
L. Hence, the Keplerian relative motion solution presented in [22] is
called the Hy L method. It is straightforward to show that both Hp
and L are conserved quantities.

C. Relative Motion with Perturbations

In the previous section, we showed that the equations of motion
can be written for the relative motion in a Keplerian potential using
the Hamiltonian description. We will now generalize this method for
a geopotential with an arbitrary number of terms in the spherical
harmonics. For this, we introduce the total gravitational potential
U(r), such that

U(r) = —% +R() (10)

The Hamiltonian for a single satellite was given in Eq. (1). In a
similar fashion, we can generalize Eq. (6) as

Hy =4(v+18v) - (v+16v) + U(r + 1r) (11)

Because our satellites are moving in close proximity to each other,
we may expand the potential functions in a Taylor series about the
midpoint location r. Ignoring terms O(8r’) the Hamiltonian

becomes
L PR 10U()
H, _2|:V v+ (v 8v)—|—4(8v SV)] + [U(r)—i—2 r
192U(r)
s argr (8r)(8r)T] (12)

The Hamiltonian for the second satellite (H,) can be found from
the preceding equation by reversing the signs of ér and §v. As in the
Keplerian case, H; and H, are conserved by the motion. It can be
easily shown that H, + H, = 2H for this generalized case.

If we now subtract the expanded H, and H, expressions, we obtain
the relative Hamiltonian:

HR=V‘5V+$(SI‘ (13)

which is simply the generalized form of Eq. (7). We can take the
Hamilton’s equations to obtain

. 0H, R )
v YT e ar (1
. OH, .. OHg  PU®
81’—W SV——W——?SI' (15)

Conservation of the relative Hamiltonian can be shown by simply
substituting positions and velocities in Eqs. (14) and (15) into the
time derivative of H, which then becomes zero.

III. Symplectic Relative Orbit Propagation
A. Numerical Integration Scheme

We have described the motion of a pair of satellites in similar orbits
by describing the motion in terms of a nominal position and velocity
and the relative motion between the satellites. By combining these
descriptions, we can determine the position and velocity of each
satellite in turn. In this section, we shall describe how both of these
motions are propagated numerically. The procedure is very similar to
the symplectic scheme introduced for the absolute orbit (Sec. ILA).

We will make extensive use of the Hamiltonian splitting
technique, in which the Hamiltonian can be written as the sum of
more than one surrogate Hamiltonian [36]. In our case, we can first
split the Hamiltonian into a Keplerian part and perturbations.

Although the Keplerian motion can be modeled via analytical
means (see the following section), the effects of the higher-order
geopotential terms still need to be propagated numerically.
Equation (3) shows the nominal velocity jump due to a nonspherical
Earth. For the relative velocity jump over a full time step, we can
write

2

R

Adv = —

The numerical integration scheme described in Eq. (4) is a second-

order algorithm, but it is possible to construct higher-order schemes
in the following form [38]:

exp(x,,hK) exp(w,,hR) - - - exp(xoh K) exp(wohR) exp(xohK) - - -
exp(w,,AR) exp(x,, hK) a7

‘Z)Vhere Xm = wm/zv Xm—1 = (wm + wm—l)/27 s Xp = (U)| + wO)/

Aslong as the perturbations are first order, these methods will have
similar orders to the error of the associated numerical integration
formula. This condition is satisfied for the case of satellites orbiting
the Earth, because the Keplerian potential is 103 times larger than the
largest term in the perturbation, which is J,. Therefore, the order of
the scheme is O(J,1°).

For the sixth-order scheme, Yoshida [35] reports that there are
three solutions for w,,, but the one with smallest error is
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wzh w,h w;h wgh w;h wyh wgh

Xzh Xoh x+h Xoh Xoh x+h Xoh  xsh

\ h |
Fig. 2 Sixth-order symplectic scheme.

w, = —1.17767998417887100695
w, = 0.23557321335935813368

wy = 0.78451361047755726382  wy =1 — 2(w, + w, + ws)

(18)

Yoshida [35] obtained these solutions via numerically solving a set
of three algebraic equations simultaneously. We have fully
reproduced the coefficients from Leimkuhler and Reich [36], who
presented higher-precision results for the same coefficients in
comparison to Yoshida.

Higher-order schemes require a greater number of force
calculations per integration step. In fact, the second-order scheme
requires a single force calculation, whereas this increases to seven
force calculations for the sixth-order scheme. Figure 2 shows how
this sixth-order scheme works (compare with the leapfrog scheme,
shown in Fig. 1).

The preceding sixth-order integration scheme yields accurate
results, however, the force due to the higher-order geopotentials has
to be computed seven times at each time step, causing a significant
computational burden. Furthermore, the gains are arguably very
small. The J, term is already an order of magnitude smaller than the
two-body force field; the remaining geopotential terms are at least an
order of magnitude smaller than J,, though requiring much more
complicated and lengthy calculations. The solution to this problem
comes in the form of composite schemes, in which, for example,
high-order integration for more significant terms can be combined
with a low-order integration for higher-order terms.

Splitting the Hamiltonian further, one obtains Keplerian part K, J,
part R, and the remaining geopotential terms R,. Rewriting Eq. (4),
the composite integrator is constructed:

expls(K + R,)]exp(hR,) exp[zh(K + R))] (19)

so that the higher-order terms [denoted as exp(hR.)] are propagated
via longer time steps and a second-order scheme, whereas the more
significant Keplerian and J, effects (denoted as exp[s A(K + R,)])
are calculated via the sixth-order scheme, saving precious processor
time.

B. Keplerian Motion

Although it is possible to solve the absolute Keplerian motion
numerically, the existence of an exact analytical solution can be
exploited to achieve higher accuracy. For this, we use the Gauss
f — g functions (see [27] and Battin [39] for a particularly detailed
treatment). This method is particularly appealing because it is free of
singularities and does not suffer from small eccentricity effects.

To evaluate these functions we employ the Stumpff [40] ¢
functions and introduce a set of G functions for simplicity [41]. We
propagate forward in time the nominal position and velocity through
the relations

f==nG/(rer)
v =fro+ &v

f=1-uG,/rg
§=1-—uGy/r

g=t—uG
’ (20)
r = fry + gvy

where the position and velocity (r,, V) is attime t — &, where h is the
time step. For the relative motion, we can compute the variational
equations for f and g [32]; although these equations themselves are
not novel, their use in the relative motion is novel. Note that this

procedure is not exact and does cause small errors in relative motion.
The variational equations for the Keplerian update can be expressed
as

8f = uGy8ry/ 15— 18Gy /1y
8f = —u8G,/(ror) + uG,(8ry/ro + 8r/r)/(rry)

8¢ = —pbGy/r + nG8r/r @1
8r = f8ry + g8vy + rydf + volg

8v = f8ry + 86v9 + To8F + Vobg

8g = —udGs

This completes the Keplerian update for the nominal and relative
positions and velocities. Note that we will call this the §f — dg
method for relative Keplerian motion.

Malhotra [26] proposed a modification to the f — g functions to
include a simple drag model with a force acting on the alongtrack
direction. Although we have not implemented it in our propagator,
this model can be easily adapted into relative drag via taking the
variations. Strictly speaking, once the drag is taken into account, a
numerical scheme is no longer symplectic because the system
becomes dissipative.

C. Notes on Implementation

The propagator code was written in C programming language. Itis
initialized using a config file with inertial coordinates of the two
satellites and the date, as well as some propagation parameters such
as integration-step size and duration. The time system used is
Universal Coordinated Time (UTC). Initial conditions defined are
the Earth-centered inertial system at the true equator mean equinox at
the epoch. During the calculation of the forces due to the tesseral
harmonics, the conversions between the Earth-fixed rotating and
inertial frames take into account the rotation of the Earth but not
precession and nutation. These forces are calculated at each step and
it was therefore necessary to find a balance between accuracy
requirements and computational efficiency.

The user can specify which geopotential model to use (GEM10B
or WGS84) and the number of terms in the axisymmetric or
nonaxisymmetric model, depending on the speed and accuracy
requirements of the application. Sanity checks of initial conditions
and switches are also carried out in this step.

The next step is to make small adjustments to the satellite initial
conditions via the Hp and Ly values calculated. This step was
explained in detail in our previous publication [22].

As mentioned in the previous sections, the propagation is based on
a composite symplectic numerical integration scheme. Figure 3
illustrates a simple composite leapfrog scheme, in which the
Keplerian forces (K) are evaluated four times, the smaller effect of
the potential J, (denoted as R)) is calculated twice, and the effect of
the remaining geopotential terms R,, which has even smaller
contribution to the overall motion, is calculated only once. As
explained in preceding sections, the Keplerian propagation of the
absolute and relative motion is handled via the analytical method
described. The effect of J, and other geopotential terms are
calculated as simple velocity jumps due to these forces.

The code gives the user the option of using a second (as in Fig. 3)
or sixth-order scheme for the computation of Keplerian and J, forces.
The remaining forces are calculated only once during a propagation
time step.

The code outputs the coordinates of the midpoint satellite and the
inertial and local relative positions and velocities. Because of the
symplectic properties of the integrator, a crucial health check is the
conservation of relative and absolute energies, which takes into
account the contribution of all geopotential terms the user opted to
include in the force model. Although a small oscillation in energy is
to be expected, this diminishes as the integration-step size gets
smaller. Note that for a nonaxisymmetric model, energy becomes a
function of time, with n —daily oscillations of the tesseral
harmonics.
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Fig. 3 Composite leapfrog symplectic scheme.

IV. Results
A. Conservation of Energy

We can show that the relative energy is an oscillation around a
stable mean and that this oscillation amplitude goes to zero as the
time steps get smaller. The condition for this is that the geopotential
model is axisymmetric, that is, we take into account zonal harmonics
only. Similarly, for such a geopotential model, the z component of
the relative angular momentum is also conserved.

First, we will show that the relative energy and the z component of
the relative angular momentum are zero mean oscillations. We will
use an example in which we have one satellite at a 9567.2-km
semimajor axis and e = 0.3 eccentricity and another in a similar orbit
at a 23-m semimajor-axis difference in Keplerian elements. We use
an axisymmetric geopotential containing terms up to J, only and run
the propagation at 100 steps/orbit for five days (46 orbits). Figure 4
shows the variation of Hg, which is seen to be oscillating around a
stable mean, with an amplitude of 4.8 x 107!, This shows that H is
indeed conserved.

Second, the z component of the relative angular momentum is
conserved. The variation for the preceding example compared with
the initial value is just a random walk, with an error at the 10~° level,
which is down to machine accuracy. Therefore, conservation of the z
component of the angular momentum is shown for the relative
motion.

We can use this test setup to illustrate how fast the relative energy
oscillation amplitude decreases as integration time steps are made
smaller. We also would like to investigate whether this decrease rate
is any different when compared with running two absolute
propagations and taking the difference of the calculated energies. It
should be emphasized that this oscillation amplitude is also an
indicator of the positional accuracy. One use for this observation
would be to devise an algorithm that adjusts the integration-step size
according to a required accuracy level. However, this requires
identifying and quantifying the effect of the parameters that change
the oscillation amplitude. Therefore, this has been left for a future
study.

Figure 5 shows the variation of oscillation amplitudes in H,
H, — H,, and Hy for various step sizes. As can be expected, the
oscillation in H is about an order of magnitude larger than that of the
relative motion. For all cases with an increasing number of steps per
orbit, we can see the diminishing returns in the oscillation-amplitude
decrease rate. This suggests that in practice, very small step sizes will
be of limited use.

Comparing the difference in energies H, — H, and the relative
Hamiltonian H, we see that their oscillation amplitudes decrease at a
very similar rate, which suggests that very similar accuracies can be
obtained by running the relative orbit propagator or differencing the
results of two absolute propagations.

Then the question is whether we can gain CPU time for a given
level of accuracy. To test this, for both the relative orbit propagation
and differencing two absolute propagations, we measured processor
times using the C functions clock and difftime. For
consistency, each propagation was run five times and the runtimes
were averaged. The execution times were around a few seconds on a
computer with a AMD2400 CPU and 512 MB memory. For a
geopotential model with 36 terms in the zonal and tesseral
harmonics, the relative orbit propagation is found to be about 40%
faster in computational time than running two absolute orbit
propagations. This shows that the relative orbit scheme yields better
efficiency and is ideal for applications with limited computational
power.

B. Number of Geopotentials

In this section, we will compare the accuracies of geopotential
models of different complexities with a high-precision geopotential
model.

We will use the initial conditions given in Table 1 for a five-day
propagation at 120 steps/orbit. The truth model is a 1000 steps/orbit
composite symplectic scheme with a 36 x 36 geopotential field
model; as before, we calculate the absolute orbit for each satellite
with this scheme and take the difference to obtain the relative orbit.

Figure 6 summarizes the relative positioning errors after a five-day
propagation with axisymmetric and nonaxisymmetric geopotential
models containing various number of geopotentials. The curves
labeled Hi Ly and df — dg illustrate which method is used for the
Keplerian part of the propagation (as given in Secs. IL.B and IIL.B,
respectively). The label axi shows that only an axisymmetric model
is used for this run. Note that “zero geopotentials” in the figure
correspond to a Keplerian force model.

Although a higher number of geopotentials increase the accuracy,
as expected, excluding the tesseral terms seems to cause a large
offset. The total energy difference can be written as a summation of
smaller Hamiltonians due to other geopotential terms, that is,
0H =0Hyg + 6Hy + 6H3 + - -+ 4+ 8H ., Where 6H is the differ-
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Fig. 4 Variation of the Hy with J, level zonal and tesseral harmonics.
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ence in Keplerian potential, §H, is the difference in J, potential, §H;
is due to J3, and 8H, is due to all tesseral terms. Given the
coordinates of two satellites, different models will obviously yield
different §H values. The energy of a satellite determines the mean
motion, and the energy difference thus determines the relative mean
motion or relative drift rate. Evidently, a simple model that includes
four terms in the geopotential will have a significantly different drift
rate with respect to a 36-term model, due to these truncated
geopotential terms. As can be expected, the error in drift rate
manifests itself as relative positioning errors in the alongtrack
direction.

However, the most striking feature of Fig. 6 is that the §f — g and
Hp Ly methods yield virtually the same errors. In fact, the difference
between the two methods is less than 107> m for all cases.

From these tests, we conclude that for a given set of formation
initial conditions, it is possible to obtain meter-level accuracy after
five days with about 20 geopotentials included in the model. More

20 25 30 35 40
number of geopotentials
Fig. 6 Relative positioning error (log scale) with various geopotentials; five days (65 orbits).

important, we showed that the two analytical methods for Keplerian
relative orbit propagation are practically equivalent.

C. Relative Positioning Accuracy

We will demonstrate the relative positioning accuracy for a range
of initial conditions. We also would like to show that the two relative
propagation methods (§f — §g method and Hy L method presented
in [22]) will yield practically the same results, because they are both
first-order approximations to the relative motion.

Obviously, it is impossible to test the numerical propagator for
every possible initial case. Therefore, we tried to present the cases we
believe to be most representative of the overall performance of the
propagator. Even then, it is not always straightforward to isolate one
variable and test its effect on the accuracy. For example, suppose that
we set up two satellites with similar Keplerian elements and vary a
single element to investigate its effect on the motion. For a simulation

Table 1 Integration test case initial conditions in Keplerian elements

a, km e I, deg Q, deg w, deg 0, deg H L
Satl 7653.780 0.0050 60.00 40.0 20.0 240.0 —0.416665 1.095432
Sat2 7653.700 0.0055 60.01 40.0 19.0 241.0 —0.416667 1.095426
Diff —0.080 0.0005 0.010 0.0 —1.0 1.0 —2.17x107° —5.73 x 107°




IMRE AND PALMER

971

Table 2 Test case formation initial conditions in Keplerian elements

a, km e 1, deg Q, deg w, deg 0, deg H L
Satl 15,945.80 0.3500 60.00 40.03 20.00 70.00 —0.199994 1.481152
Sat2 15,945.65 0.3501 60.03 40.03 19.95 70.05 —0.199996 1.481086
Diff —0.15 0.0001 0.030 0.030 —0.050 0.050 —1.88 x 10°° —6.60 x 107>

with perturbations to the Keplerian potential, these Keplerian
elements will no longer be constant and, even if the energies in the
Keplerian model are the same, the satellites will drift apart under this
more complicated geopotential model. It is therefore difficult to
distinguish between the errors due to increasing separation between
the satellites and those due to the tested Keplerian element. Similarly,
if we want to test the dependency on the semimajor axis, simply
increasing it and keeping other Keplerian elements constant will not
yield very useful results. The differential drift rate is proportional to
Hy/H; therefore, the high semimajor cases will have much smaller
separations and relative positioning errors. In short, the results need
to be analyzed with due care.

The first set of tests will use the initial conditions given in Table 2
to run five-day (21.5-orbit) simulations. We will start with a
Keplerian model to compare the two analytical relative orbit models.
The initial separations range from 5.8 km for e = 0.55 to 9 km for
near-circular cases. Peak separations range from 54 km for e = 0.55
to 34 km for near-circular cases.

Figure 7 illustrates the relative positioning error for this case
through a range of eccentricities. The curves labeled HyL; and
df — dg illustrate which method is used for the propagation. As can
be seen, the two methods yield virtually the same results, proving
further that they are practically equivalent. The difference between
the two remains around 10~7 m, regardless of the eccentricity.

The second set of tests is to repeat the preceding, but with a
36 x 36 geopotential model and two step sizes: 100 and 300 steps/
orbit. The truth model is 1000 steps/orbit. Figure 8 shows the results
for this test case, where HixLy or df — dg denotes the method and
100 or 300 denotes the number of steps/orbit. As expected, the two
methods yield practically identical results, with differences around
1077 m or less. Although the relative positioning accuracy is very
high for both the 100 and 300 steps/orbit cases, the former start to
become unstable at around e = 0.5. For the latter, although the errors
increase with eccentricity, they stay well below meter level.

We will now examine the effect of inclination on accuracy. For
this, we will use the initial conditions given in Table 1, in a five-day,

0.3 0.35 0.4 0.45 0.5
eccentricity

0.55

Relative positioning error (log scale) with eccentricity for Keplerian potential; five days (21.5 orbits).
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Fig. 9 Relative positioning error with eccentricity for 36 x 36 potential; five days (21.5 orbits).

36 x 36 geopotential model propagation with 100 steps/orbit.
Among the initial Keplerian elements, only the inclination will be
varied. Maximum relative positioning errors during the test runs are
presented in Fig. 9.

The relative positioning errors increase linearly, to reach around
the 1-m mark at the end of this five-day propagation. There is no
discernible pattern in the error to suggest that inclination has a
significant effect on the relative positioning error.

D. Long-Term Stability

In the preceding sections, we showed that the algorithm works
remarkably well for durations of several days. However, we would
like to demonstrate how it would perform when the separations are
well beyond the close-proximity assumption; it is important to see
how quickly the algorithm breaks down.

To this end, we used the initial conditions given in Table 1, but
with a 600-m semimajor-axis difference rather than 80 m. We run a
50-day (650-orbit) propagation with a 36 x 36 geopotential model at
a step size of 120 steps/orbit. The truth model is at 1000 steps/orbit,
employing the same geopotential model. The separation starts from
1.5 km and exceeds 3640 km by the end of the simulation run.

Figure 10 shows the quadratic growth of the relative positioning
error both in kilometers and as a percentage of the separation.
Although the relative positioning error reaches 35 km by the end of
50 days, it corresponds to about 1% of the separation.

The errors in this example are in the alongtrack direction. Even
though we take great care in matching the real energy difference
when initializing the propagator, the residual relative energy error
adds a small relative drift between the satellites. As the satellites drift
apart, the assumption of “satellites in close proximity” breaks down
and linear equations start to fail.

V. Conclusions

A novel method capable of propagating the relative motion
between two satellites in formation about a geopotential model
containing terms up to 36 x 36 was presented. This numerical
scheme is simple to implement and builds upon the heritage of
existing symplectic absolute orbit propagators. The relative
propagation is symplectic and the Keplerian part of the motion is
handled analytically using a novel implementation of the Gauss
functions. A high-performance composite numerical integration
scheme was also set up for better use of processing power. For a
given integration-step size, this is about 40% faster than differencing
two absolute orbit propagations, for the same level of accuracy.

The results demonstrate that the propagator can yield a meter level
or better relative positioning accuracy after five days, even with 36
zonal and tesseral harmonics included in the geopotential model,
without any limitations on eccentricity. It is therefore a significant
step toward relative navigation filters with better dynamic models,
requiring reduced sensor inputs.
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